
NASA-TM-I[20?2

RNR-88-003

Performance Comparison of the CRAY

X-MP/24 with SSD and the CRAY-2.

Richard E. Anderson

Roger G. Grimes

Engineering Scientific Services Division

Boeing Computer Services, M/S 7L-21

Seattle, WA 98124

and

Horst D. Simon 1

Numerical Aerodynamic Simulation (NAS) Systems Division

NASA Ames Research Center, Mail Stop 258-5

Moffett Field, CA 94035

Abstract

The CRAY-2 isconsideredto be one of the most powerful super-

computers. Itsstate-of-the-arttechnologyfeaturesa fasterclockand

more memory than any other supercomputer availabletoday.In this

reportthe singleprocessorperformance of the CRAY-2 iscompared

with the older,more mature CRAY X-MP. Benchmark resultsare in-

cludedforboth the slow and the fastmemory DRAM MOS CRAY-2.

Our comparison isbased on a kernelbenchmark setaimed at evalu-

atingthe performance ofthesetwo machines on some standard tasks

in scientificcomputing. Particularemphasis isplaced on evaluating

the impact of the availabilityof largerealmemory on the CRAY-2

versusfastsecondary memory on the CRAY X-MP with SSD. Our

benchmark includeslargelinearequation solversand FFT routines,

which testthe capabilitiesof the differentapproaches to providing

largememory.
We findthat in spiteof itshigher processorspeed the CRAY-2

does not perform as wellas the CRAY X-MP on the Fortran ker-

nel benchmark. We alsofindthat forlarge-scaleapplications,which

have regularand predictablememory accesspatterns,a high-speed

secondary memory devicesuch as the SSD can provide performance

equal to the largerealmemory of the CRAY-2.

iThe author is an employee of the ESS Division of Boeing Computer Services.

Table 1: Machine Comparison (single processor)

X-MP/24 CRAY 2

Clock (nsec)

Number of vector units

Chaining

Peak performance (MFLOPS)

Registers

9.5

2

yes

210

8 x 64 words

4.1

2

no

487

8 x 64 words

Local memory

Number of paths to memory

Memory size (Mwords)

SSD size (Mwords)

Memory latency (cycles)

Pseudo bank cycle time

none

3

4

128

14

16K

1

256

none

4s(sT)
2s(41)

1 Introduction

The CRAY-2 with its 4.1 nanosecond (nsec) clock is potentially over twice as

fast as the CRAY X-MP/24 [Chen 1984,Cray 1985,Neves 1987]. In addition

to its superior clock speed, the CRAY-2 has a tremendous advantage in

word addressable memory. The CRAY X-MP, however, is a proven machine

with a mature compiler and a large set of applications programs developed

especially for its architecture. Some of the key architectural features of the

two machines involved are given in Table 1. Note that we have given the

features of the particular machines involved in this benchmark, for example

the newer X- MPs have the faster clock rate of 8.5 nsec compared to the 9.5
nsec listed in Table 1.

Recently an upgraded version of the CRAY-2 with faster memory has

been introduced [Cray 1987]. The essential difference of the newer CRAY-2

in comparison to the older CRAY-2 is its faster DRAM MOS memory, which

reduces the memory latency from 57 to 45 cycles. Also all DRAM CRAY-

2 systems feature pseudobanking, which allows faster memory accesses and

improves the performance. Each of the 128 banks of the CRAY-2 is divided

in half. If there are two access in different halls of the same bank at the

same time, then the second one can proceed after 25 cycles (41 cycles on

the slower machine). Pseudo banking effectively turns the 128 banks of the

CRAY-2 into 256 banks, and thus reduces the average memory latency. The

CRAY-2S system, which features even faster static random access memory

(SRAM) is not considered here.

Also all data in Table 1 refer to a single CPU, since we are not concerned

with multitasking performance in this benchmark. We will point out how

some of these features affect the relative performance of the two machines.

The first set of CRAY-2 timings was obtained in March of 1987 on the CRAY-

2 with serial number 2002, which is installed with the NAS project at NASA

Ames Research Center in Moffett Field, California. A second set of CRAY-2

timings was obtained in February of 1988 on the same machine (serial number

2002) in order to measure improvements in the Fortran compilers. Finally a

third benchmark was carried out on the new CRAY-2 (serial number 2013)

at the NAS project in order to measure the effects of the upgraded memory

on the machine performance. For brevity we will refer to the serial numbers

of the machines involved, when discussing the older, slower memory CRAY-2

(2002) versus the newer, faster memory CRAY-2 (2013).

The X-MP/24 timings were obtained using the Boeing Computer Ser-

vices' machine in Bellevue, Washington. The Boeing CRAY X-MP, one of

the older X-MPs, has a clock rate slightly slower than the current rate of 8.5

nsec on the newer models.

Twenty-four FORTRAN routines were benchmarked on both machines .

These computational kernels are typical of those found in scientific program-

ming. They were assembled based on the experience at Boeing Computer

Services. Assembly coded efficient implementations of these kernels for the

CRAY X-MP are available in VectorPak [Boeing 1987]. The benchmark also

includes large problems which are out-of-core problems on most other ma-

chines but the CRAY-2. The solution to these problems is computed in-core

on the CRAY-2 and out-of-core using the SSD (solid-state-storage device) on
the X-MP.

2 Benchmarking Approach

There are 24 computational kernels in the benchmark. They are listed below

with a short description of what computation they perform and the reason

why they were included in the benchmark.

HC1DFT performs a single one-dimensional FFT. This is an important

computational kernel which usually runs into memory contention prob-
lems.

HCFFTS performs several one-dimensional FFTs simultaneously. This is

an important computational kernel which is heavily used in multidi-

mensional FFT work. This program vectorizes across the number of

FFTs and avoids the memory contention problems. This computational

kernel is heavily used by several groups in the Boeing company and is

designed to provide high performance on a vector computer.

HC2XFT performs a two-dimensional FFT using external storage. This

code uses HCFFTS for most of the computations but also performs

standard FORTRAN direct access, fixed length record I/O. Although

I/O is usually not a consideration with the CRAY-2's large memory,

HC2XFT along with HSGEXL will measure the performance balance

between I/O and CPU speeds.

HSGELE solves general systems of linear equations Az = b, using the best

algorithm (based on matrix multiplication) for vector computers. This

again is an important computational kernel which is designed to provide

high performance on a vector computer. This code was modified and

used in the large problem benchmark.

HSGTLE solves a single tridiagonal system of equations Tz = b. This code

is based on an extension of the cyclic reduction algorithm and provides

very efficient performance on a vector computer.

HSMMPG computes matrix-matrix products of the form C = AB and
C=C+AB.

HSMVPG computes matrix-vector products of the form y = Ax and y =

y-4- A:r.

HSSGTL solves several tridiagonal systems of equations Ta: = b simul-

taneously. This code vectorizes across the systems to provide high

performance for such application areas as line iterative methods.

ISAMAX finds the element with the largest magnitude in a vector. This

is inherently a scalar operation but some vector architectures, such as

the CRAY X-MP, support this operation in vector mode.

ISCTEQ counts the number of elements in a vector that are equal to a

given scalar. This is implemented in a loop with an IF THEN -END

IF construct and tests the ability of the compiler to vectorize this con-

struct. For example, the CFT 1.13 compiler does not vectorize this

loop, whereas CFT 1.14 does.

SASUM sums the absolute value of the elements in a vector. This operation

tests the ability to vectorize a recursive operation by separating the

operations and collapsing the partial sums at the end.

SAXPY performs y = az + y, where z and y are vectors and a is a scalar.

This loop tests the computer's balance between memory references (two

fetches and one store) and floating point operations (one multiply and

one add). The X-MP can execute two fetches and a store concurrently,

while the CRAY-2 can execute only one memory access instruction at

a time (either a fetch or a store).

SAXPYI performs an indexed SAXPY. This kernel performs the above

loop, except an index array is used for referencing the elements of the

vector z. This kernel tests the ability of the machine to randomly fetch

entries from memory.

SCOPY copies vector z into vector y. This tests speeds of memory refer-

ences. The X-MP can do a fetch and a store concurrently while the

CRAY-2 must execute the fetch and store separately.

SDOT computes the vector inner product. This is an important compu-

tational kernel which requires both a balance between memory and

floating point as well as the ability to collapse partial sums.

SDOTI performs an indexed SDOT.

SGTHR gathers entries of vector x specified by an index vector into the

dense vector y.

4

SLSTNE counts and lists entries of a vector not equal to a scalar. This is

similar but more complex than ISCTEQ.

SNRM2 computes the Euclidean norm.

SSCAL scales a vector with a scalar.

SSCTR scatters the entries of a dense vector into specified entries of a

vector z. This is the reverse of SGTHR.

SSWAP interchanges the contents of two vectors. This is a memory in-

tensive operation requiring two fetches and two stores with no floating

operations involved. This tests the memory reference speeds of the

computer.

All the subroutines were written in portable FORTRAN 77. They were

compiled with CFT 1.13 on the X-MP. The exceptions were SGTHR and

SSCTR, which require CFT 1.14 to vectorize gather/scatter instructions.

The code was written as portable FORTRAN and no attempt was made to

take advantage of the X-MP's architecture or compiler: (For example, there

was no unrolling of outer DO LOOPs.) These kernels are designed to test

the performance of a given computer/compiler in executing FORTRAN.

The same Fortran routines were ported to the CRAY-2 in March 1987

and compiled with CFT77, which is a port from CFT 1.09. Neither the

X-MP nor the CRAY-2 would vectorize the complex SAXPY, so a compiler

directive (IVDEP) was added and both rates are reported. The CRAY-2 did

vectorize the complex dot product while the X-MP would not. A compiler

directive was added to the complex dot product and both times are reported

for the X-MP.

In March 1987 code compiled under CFT2 generally executed about 30%

faster than the same code compiled with CFT77. Unfortunately we were

unable to use CFT2 because at the time of the original benchmarking CFT2

did not support generic functions (such as MIN, MAX, and LOG). The July

1987 release of CFT2 (version 3.0b) does support generics. However, the most

recent release of CFT77 (version 1.3) is now within 5% of the performance

of CFT2. Therefore there we did not include benchmarking results obtained

with CFT2.

Table 2: Performance Comparison of Two Compilers on

CRAY-2 Using a Two-dimensional FFT Routine.

Problem Size CFT77 CFT2 Ratio CFT2/CFT77

MFLOPS MFLOPS

1024 × 1024 91 120 1.3

1024 × 2048 95 130 1.4

the

The potential performance variation due to different compilers can be

seen in the following example. Bailey's FORTRAN FFT code was used to

compare the two compilers CFT77 (version 1.2) and CFT2 in March 1987

[Bailey 1987]. The results are given in Table 2. The 35% performance dif-

ference between CFT77 and CFT2 was typical of results obtained using the

two different compilers at that time.

3 Performance on the Kernel Benchmark

Table 3 shows the performance for the routines described in section 2. The X-

MP timings were obtained at three different times under various system loads

and the variation in timings was less than 10%. The CRAY-2 benchmark

was executed ten times at various system loads and most routines showed a

variation over 30% from best to worst. The times reported for the CRAY-2

are the median from all the data collected. The CRAY-2 data were obtained

on serial number 2002 with CFT77, version 1.2.

The kernels which operated on vectors were tested with vector lengths

from 1 to 20,480. The rates reported are for the vector lengths of 20,480.

The matrix-vector and matrix-matrix operations used vectors with lengths

ranging from 1 to 256. These rates were computed with the longest vector
as well.

The table also provides the vector half-performance length, i.e., the length

at which the vector achieves one half of the maximum performance for that

operation. The true asymptotic rate was not actually determined, but taken

from the vector performance at 20,480. The CRAY-2 generally reaches its

half-performance length before the X-MP, but this can be attributed to the

X-MP achieving higher rates.

On the CRAY-2, a timing problem exists for the gather instruction, so

the hardware forces a maximum memory reference which results in three

null references for each data reference. As a result, SGTHR timings are

much slower than SSCTR (scatter) timings.
Note that in Table 3 SGTHR and SSCTR have been compiled using

CFT 1.14 on the CRAY X-MP in order to take advantage of the hardware

gather/scatter. Also the "asymptotic" rate for the matrix operations is the

performance for n = 256.

Simply considering the basic clock speed one would expect the CRAY-

2 to be about twice as fast as the X-MP. The most important result of

this benchmark, which becomes clear from Table 3, is that this is not the

case. In many examples the CRAY-2 performed more slowly than the (3RAY

X-MP, in some extreme cases by as much as a factor of three. Most of

the comparatively slow rates can be explained by considering the impact of

architectural characteristics of the CRAY-2.

There were three routines which executed without vectorization on both

machines: ISAMAX, ISCTEQ, and SLSTNE. Here the faster speed of the

CRAY-2 was significant and it outperformed the X-MP on these problems.

These were the only kernels that consistently ran faster on the CRAY-2 than

the X-MP.

In executing the routines that vectorized, the CRAY-2 had slight advan-

tage in a few instances (e.g. SSWAP), but most routines were significantly

faster on the X-MP. For example, on HSSGTL (tridiagonal solver), the X-MP

ran more than three times faster than the CRAY-2.

On one group of routines the speed of the X-MP can be attributed to the

availability of its three paths to memory; only one path is available on tile

the CRAY-2. The SAXPY kernel could potentially be performed three times

as fast on the CRAY-2 with three paths and chaining available. This would

bring the SAXPY performance on the CRAY-2 in about the right range

relative to its clock speed. Since SAXPY-type operations are predominantly

used in HSGELE, HSMMPG, and HSMVPG these kernels could also perform

significantly faster with three paths.
For some other kernels the main source of performance degradation on

the CRAY-2 were due to memory bank conflicts. This applied to tile FFT

routines (HCFFTS, HC1DFT, and HC2XFT). Table 3 also lists many rou-

7

Table
Subroutine
(stride)
HCFFTS
HC1DFT
HC2XFT
HSGELE
HSGTLE
HSMMPG
HSMVPG
HSSGTL
ISAMAX (1)
ISAMAX (32)
ISCTEQ (1)
ISCTEQ (32)

SASUM (i)

SASUM (32)

SAXPY (1)

SAXPY (32)

SAXPYI

SAXPYI (CDIR)

SCOPY (1)

SCOPY (32)

SDOT (i)

SDOT (32)

SDOTI

SDOTI (CDIR)

SGTHR

SLSTNE (1)

SLSTNE (32)

SSC AL (I)

SSCAL (32)

SSCTR

SSWAP (1)

SSWAP (32)

CRAY-2

Rate

45.6

4.8

37.7

38.0

28.3

48.3

50.3

3.2

2.0

1.9

2.7

2.2

53.0

16.5

59.0

10.0

2.2

22.0

85.0

14.0

77.0

18.8

27.0

27.0

51.0

2.1

2.1

41.0

8.0

90.0

54.0

8.0

the Kerr Benchmark.
CRAY X-MP X-MP/CRAY-2

N, Rate N, Ratio
2

80.6 1.77

13.7 2.85

69.9 1.97

74.8 1.97

37.0 1.31

46 92.7 76 1.92

39 99.7 61 2.00

10.5 3.28

6 1.5 5 .72

6 1.2 5 .62

6 1.6 3 .62

6 1.5 2 .71

228 78.9 459 1.49

86 24.6 152 1.50

89 131.5 225 2.20

16 17.4 34 1.74

4 4.8 6 2.18

32 43.0 56 1.95

94 148.0 223 1.74

43 12.4 41 .89

219 140.0 451 1.83

56 24.2 85 1.29

79 7.7 18 .28

79 60.0 160 2.22

31 106.0 89 2.08

6 1.5 3 .70

6 1.4 3 .70

80 68.3 157 1.67

16 12.2 27 1.53

40 112.0 92 1.24

61 5O.2 87 .93

10 i2.1 25 1.51

tines with stride 1 and stride 32. The stride 32 is the worst case stride for

the X-MP. The worst case for the CRAY-2 is 256 (considering pseudobank-

ing); however, a 32 stride causes a bank conflict every fourth clock cycle on

the CRAY-2. The bank resolution time on the CRAY-2 is 45(or 57 for the

slower memory machine) clock cycles and 4 clock cycles on the X-MP, so

the penalty for bank conflicts is much more severe on the CRAY-2. Both

computers showed substantial degradation with the stride 32. However, the

degradation was comparatively greater on the CRAY-2 as, for example, in
SSWAP.

The worst performance ratio (3.28 times slower) for the CRAY-2 was

obtained for the tridiagonai linear equation solver. However, this Fortran

code is based on a cyclic reduction algorithm, involving parameters which

have been optimized for the CRAY X-MP.

The performance of the CRAY-2 has been significantly improved over

the last year. Major improvements are the initially mentioned upgrade to

faster memory, as well as new releases of the Fortran compilers. We repeated

the above benchmark in February 1988, and took both new improvements

into account. The results are given in Table 4. The combined effect of both

a better compiler and a faster memory resulted in up to 40% performance

improvement. In some cases this was enough for the CRAY-2 to come close

or even surpass the CRAY X-MP performance.

4 Performance on Large Memory Applica-

tions

Two standard linear algebra subroutines were chosen to evaluate the per-

formance of both machines when large memory is required. In particular

we were interested in benchmarking a code that required SSD usage on the

X-MP. Contrary to the previous section in which Fortran kernels were com-

pared on the two machines, here we attempted to use code which has been

optimized for each machine. All CRAY-2 results in this section were obtained

on the slower memory machine serial number 2002, using CFT version 1.2.

As the first benchmarking task a two-dimensional complex FFT was cho-

sen for the following reasons: it is an important kernel in applications pro-

gramming, it requires a large amount of both computation and I/O, and it

Table 4: Performance Improvements on the CRAY-2 through Com-

piler and Hardware Upgrades (all figures are MFLOPS •

Subroutine Serial 2002 Serial 2002 Serial 2014 X-MP

HCFFTS

HC1DFT

HC2XFT

HSGELE

HSGTLE

HSMMPG

HSMVPG

HSSGTL

ISAMAX (1)

ISAMAX (32)

ISCTEQ (1)

ISCTEQ (32)

SASUM (i)

SASUM (32)

SAXPY (I)

SAXPY (32)

SAXPYI

SAXPYI (CDIR)

SCOPY (1)

SCOPY (32)

SDOT (i)

SDOT (32)

SDOTI

SDOTI (CDIR)

SGTHR

SLSTNE (i)

SLSTNE (32)

SSCAL (1)

SSCAL (32)

SSCTR

SSWAP (1)

SSWAP (32)

CFT77

version 1.2

45.6

4.8

37.7

38.0

28.3

48.3

50.3

3.2

2.0

1.9

2.7

2.2

53.0

16.5

59.0

10.0

2.2

22.0

85.0

14.0

77.0

18.8

27.0

27.0

51.0

2.1

2.1

41.0

8.0

90.0

54.0

8.0

CFT77

version 1.3

53.0

5.8

44.0

32.0

59.0

60.0

4.8

2.0

1.9

2.3

2.3

72.0

16.0

71.0

11.0

4.5

26.0

63.0

7.6

85 .0

18.0

34.0

72.0

2.3

2.0

46.0

8.5

77.O

58.O

7.3
lfl

CFT77

version 1.3

58.0

8.0

48.0

40.0

60.0

60.0

4.8

2.0

2.0

2.5

2.4

78.0

22.0

82.0

16.0

5.0

29.0

75.0

15.0

98.0

25.0

39.0

83.0

2.3

2.5

46.0

12.0

88.0

72.0

14.0

CFTI.13

80.6

13.7

69.9

74.8

37.0

92.7

99.7

10.5

1.5

1.2

1.6

1.5

78.9

24.6

131.5

17.4

4.8

43.0

148.0

12.4

140.0

24.2

7.7

60.0

106.0

1.5

1.4

68.3

12.2

[12.0

50.2

12.1

Table 5: Performance Comparison on Two-dimensional FFT Codes.

Dimension CRAY-2 X-MP CRAY-2/X-MP

1024 x 1024

1024 x 2048

1024 x 4096

2048 × 2048

2048 × 4096

4096 × 4096

MFLOPS

123

130

136

142

146

148

MFLOPS

95

95

97

96

96

95

1.3

1.4

1.4

1.5

1.5

1.6

vectorizes well by performing simultaneous one dimensional FFTs.

The two-dimensional FFT executed on the X-MP is an optimized CAL

code that writes intermediate results to the SSD [Boeing 1987]. On the

CRAY-2 we used an FFT developed by Bailey. Bailey's one-dimensional

FORTRAN FFT is a radix-4 algorithm that avoids power of two memory

strides [Bailey 1987]. Although this comparison may appear unfair, i.e., CAL

on the XM-P and FORTRAN on the CRAY-2, it should be noted that Bai-

ley's one-dimensional FFT outperforms the CAL version supplied by CRAY

Research. For the two-dimensional version the CAL coded routine in CRAY's

SCILIB runs at 300 MFLOPS and is faster than Bailey's two-dimensional

FFT. The two-dimensional FFTs demonstrate what the CRAY-2 was de-

signed to do, namely to provide an environment for developing portable code

without the complexities of disk I/O and assembly programming. Table 5

shows the results of this benchmark comparison.

The second application kernel for benchmarking was a general linear equa-

tion solver. The general dense linear equations were solved on the CRAY-2

using a modified version of SGEFA from LINPACK [Bunch et. al. 1979].

The initial version, a straight-forward FORTRAN implementation, ran only

about 36 MFLOPS on the CRAY-2. Then the FORTRAN subroutine in

SGEFA performing matrix-vector multiplications was replaced with the cor-

responding CAL routine MXVA. A considerable increase in performance re-

suited as shown in Table 5. However, the times reported here for the CRAY-2

should not be taken as optimal for solving linear equations on the CRAY-2.

They are just an indication of the performance one can achieve on large prob-

lems by making a few simple modifications in existing FORTRAN code. A

11

Table 6: Performance Comparison on Linear

CRAY-2 CRAY-2

Size Rate Rate best/worst

(worst) (best)

1000 151 229 1.5

1500 152 246 1.6

2000 157 255 1.6

2500 153 260 1.7

3000 156 264 1.7

Equation Solver.

X-MP

Rate

190

191

191

192

191

linear equation solver that operates at over 350 MFLOPS on large problems

has been developed by Calahan [Calahan 1986}. An even faster solver might

be possible by using Calahan's approach based on a matrix-matrix multi-

plication kernel, and by utilizing the new fast matrix-matrix multiplication

subroutine developed by Bailey [Bailey 1988]. CRAY's SCILIB provides a

routine for matrix inversion, which runs at 300 to 400 MFLOPS.

The times reported in Table 6 for the X-MP, however, are optimal. The

linear equation solver used on the X-MP is using an out-of-core Gaussian

elimination algorithm, based on block matrix-matrix products [Grimes 1987].

The program is running at about 90% of peak machine speed and imple-

mented as HSGEXL in VectorPak [Boeing 1987].

The linear equation solver was executed five times on both machines. The

remarkable result in Table 6 is not so much the actual performance, but the

considerable performance variation on the CRAY-2. While all the routines

varied about 15 to 35% in performance depending on system load, a 70%

difference was noted in the linear equation solver. The best case times were

obtained on a Sunday morning at 2:44 A.M. The machine was probably idle

at that time so memory contentions were minimal. The worst case times

reported are closer to the average and to what one would expect to get when

the machine is busy. (All the times reported here are averages of five runs.

Each problem size is run five times consecutively.)

12

5 Conclusions

On the Fortran kernel benchmark the performance of the CRAY-2 varied

from about a third the performance of the CRAY X-MP to three times

the performance of the X-MP. In many instances the comparatively worse

performance of the CRAY-2 can be directly attributed to architectural dis-

advantages most notably the limited one path to memory, and the relatively

slow memory. Improvements in compilers and improvements in memory

speed have led to some considerable overall performance improvements on

the GRAY-2. However, both will not be able to overcome some of the archi-

tectural limitations of the CRAY-2.

While the X-MP generally had an advantage on the Fortran kernels, the

CRAY-2 showed it could easily outperform the X-MP on large problems. The

CRAY-2 did this without the extra effort of writing temporary results to a

disk file. However, the better performance did not come as easily as a general

user would hope for. Fast algorithms for the CRAY-2 require a detailed un-

derstanding of the architecture of the machine, and a fair amount of sophisti-

cation.when implemented (see [Bailey 1987,Bailey 1988,Calahan 1986]). We

venture to say here that the programming effort in implementing high speed

linear algebra algorithms for the CRAY-2 can be of the same level of dif-

ficulty, as the corresponding effort in implementing out-of-core algorithms

using the SSD on the CRAY X-MP. For computations which require a reg-

ular and predictable access to the data, the X-MP type architecture with

a high-speed secondary memory device (which has evolved by now to the

new CRAY Y-MP) is an efficient alternative to the large real memory of the

CRAY-2. But obviously the CRAY-2 is the machine of choice for any more

complicated application program with large real memory requirements, for

which a rewriting using I/O operations is out of question.

References

[Bailey 1987] D. H. Bailey. A High Performance FFT Algorithm for

Vector Supercomputers. Technical Report, NAS Sys-

tems Division, NASA Ames Research Center, Moffet

Field, California, July 1987. submitted to Journal of

13

[l Ley

¸

p¢'¢omputer Applications.

[3, B, Bt||¢y. Extra high speed matrix multiplication

0.n the CRAY.2. SIAM J. Sci. Stat. Comp. (to appear),

_0¢J!lg Computer Services. VectorPak Users Manual.
!0g'/', Doeurtaent No. 20460-0501-R1.

J, I]urtch, J. Don.garra, C. Moler, and G. Stewart. LIN-

PACK U#or's Guide. SIAM Publications, Philadelphia,

ll} 'D,

O, A, C_,lahan, Block oriented, local-memory-based lin-

¢_ equation solution on the CRAY-2: uniprocessor al-

gofithm_..s, !n Proceedings of the 1986 International Con-

]¢renee on Parallel Processing, pages 375 - 378, IEEE

_ompute¢ Society, Los Angeles, 1986.

Stew $. Chert. Large-scale and high-speed multipro-

¢¢saor system for scientific applications:Cray X-MP se-

ries, |_ J, Kowalik, editor, High-Speed Computation,

l_¢g_s 59 = 68, Springer Verlag, NATO ASI Series, Hei-

ne|berg, !984.

C_ay Research, Inc. Introducing the CRAY-2 computer

sy-ste.m, GRAY Channels, 2 - 5, Summer 1985.

Gr._.y R.esearch, Inc. Introducing the enhanced CRAY-

2__r!es of eomputer systems. CRA Y Channels, 2 - 3,

Summer 1987.

R. Grimes. Solving Systems of Large Dense Linear

_quations. Technical Report ETA-TR-44, Boeing Com-

pRter Services, Seattle, Washington, 1987. to appear in

The Journal of Supercomputing.

Kenneth W. Neves. Supercomputing: Hardware and Al-

gorithms. Technical Report ETA-TR-62, Boeing Com-

puter- Services, Seattle, Washington, 1987.

14

Richard E. Anderson is a member of the Applied Mathematics Group

at Boeing Computer Services. Before joining Boeing he worked in instru-

mentation and control at the Stanford Linear Accelerator Center. His work

involves optimizing existing numerical software for supercomputer architec-

tures as well as benchmarking and code development.

Anderson earned a B.S in Mathematics from Brigham Young University

and a M.S. in Mathematics from Montana State University.

Roger G. Grimes was born in Omak, Washington, on August 5, 1953.

He received h:.s M.A. degree in Mathematics from The University of Texas

at Austin, Texas, in 1976.

In 1977 he joined the Center for Numerical Analysis at The University of

Texas as a mathematical software programmer. His main area of work was

iterative methods for the solution of real symmetric positive definite linear

systems. In 1979 he joined Boeing Computer Services as a numerical analyst.

Since then he has been involved with the development and the application

of mathematical software for a wide variety of areas including the solution

of large linear algebra problems, both dense and sparse.

Horst D. Simon was born in Stadtsteinach, West Germany, on August

8, 1953. He received his Diplom in mathematics from the TU Berlin in 1978,

and his Ph.D. in Mathematics from the University of California, Berkeley, in

1982.

After a year as assistant professor for applied mathematics at SUNY

Stony Brook, he joined Boeing Computer Services in 1983 as a research

analyst. His assignments included the development of mathematical software

for the CRAY 1-S and CRAY X-MP computers, and the coordination of

research and consulting efforts for Boeing's participation as a Phase I site in

the NSF supercomputing initiative. From 1986 to 1987 he was manager of

the Computational Mathematics Group, which include the management of

the Algorithm Research Project at Boeing's High Speed Computing Center.

In Fall of 1987 he began a new assignment with the NAS project at NASA

Ames Research Center, Moffett Field, California.

15

